The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data

نویسنده

  • Yinnian He
چکیده

This paper considers the stability and convergence results for the Euler implicit/explicit scheme applied to the spatially discretized twodimensional (2D) time-dependent Navier-Stokes equations. A Galerkin finite element spatial discretization is assumed, and the temporal treatment is implicit/explict scheme, which is implicit for the linear terms and explicit for the nonlinear term. Here the stability condition depends on the smoothness of the initial data u0 ∈ Hα, i.e., the time step condition is τ ≤ C0 in the case of α = 2, τ | log h| ≤ C0 in the case of α = 1 and τh−2 ≤ C0 in the case of α = 0 for mesh size h and some positive constant C0. We provide the H2-stability of the scheme under the stability condition with α = 0, 1, 2 and obtain the optimal H1−L2 error estimate of the numerical velocity and the optimal L2 error estimate of the numerical pressure under the stability condition with α = 1, 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of three different numerical schemes for 2D steady incompressible lid-driven cavity flow

In this study, a numerical solution of 2D steady incompressible lid-driven cavity flow is presented. Three different numerical schemes were employed to make a comparison on the practicality of the methods. An alternating direction implicit scheme for the vorticity-stream function formulation, explicit and implicit schemes for the primitive variable formulation of governing Navier-Stokes equatio...

متن کامل

Rate of Convergence in Inviscid Limit for 2D Navier-Stokes Equations with Navier Fricition Condition for Nonsmooth Initial Data

We are interested in the rate of convergence of solutions of 2D Navier-Stokes equations in a smooth bounded domain as the viscosity tends to zero under Navier friction condition. If the initial velocity is smooth enough( ), it is known that the rate of convergence is linearly propotional to the viscosity. Here, we consider the rate of convergence for nonsmooth velocity fields when the gradient ...

متن کامل

On Finite Time Singularity and Global Regularity of an Axisymmetric Model for the 3D Euler Equations

We investigate the large time behavior of an axisymmetric model for the 3D Euler equations. In [22], Hou and Lei proposed a 3D model for the axisymmetric incompressible Euler and Navier-Stokes equations with swirl. This model shares many properties of the 3D incompressible Euler and Navier-Stokes equations. The main difference between the 3D model of Hou and Lei and the reformulated 3D Euler an...

متن کامل

On the long-time stability of the implicit Euler scheme for the 2D space-periodic Navier-Stokes equations

In this paper we study the stability for all positive time of the fully implicit Euler scheme for the two-dimensional Navier–Stokes equations. More precisely, we consider the time discretization scheme and with the aid of the discrete Gronwall lemma and the discrete uniform Gronwall lemma we prove that the numerical scheme is stable.

متن کامل

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 77  شماره 

صفحات  -

تاریخ انتشار 2008